Airfield Pavement Smoothness
Airport Pavement Workshop

Michael Gerardi
APR Consultants
Presentation Overview

• Why is Smoothness Important
• New Pavement Acceptance Criteria - (FAA AC 150/5370) – 16-Foot Straightedge and Profilograph
• Profiling Devices
• Pavement Roughness
• Existing Pavement Rejection Criteria (FAA AC 150/5380-9)
• Case Histories
The Primary Reason We Strive to Build and Maintain Smooth Pavements is to Minimize Aircraft Dynamic Response, and Maximize Aircraft Performance.
FAA AC 150/5370-10F
Section 5 – P501 Rigid Pavements

• Smoothness (501-5.2) page 319
 ▫ 16-Foot Straightedge (.25-inch)
 ▫ California Profilograph (15 inch/mile)
• Grade Control
• Payment Schedule (per lot)
Airport Pavement Smoothness
The 16-Foot Straightedge

- Max Deviation $\frac{1}{4}$ Inch for Final Surface
- Longitudinal Measurement Advancing not more than Half the Length of the Straightedge
- Deviations $> \frac{1}{4}$ Inch but $< \frac{1}{2}$ Inch Will be Ground
- Deviations $> \frac{1}{2}$ Inch, Pavement Shall be Replaced when Directed by the Engineer
Pavement Smoothness Assessment Using California Profilograph

- Two Passes Down Each Paving Lane
- One Pass on CL for Lanes Less than 20 Feet Wide
- 15 inches/mile Tolerance with a .2-inch Blanking Band
- Scallops Greater than .4-inch Must be Removed
- Re-Profile after Corrective Action
Pay Adjustment for Smoothness – Profilograph

b. Payment. Payment shall be made under:

Item P-501-8.1a Portland Cement Concrete Pavement—[per cubic yard (cubic meter)] | [per square yard (square meter)]

c. Basis of adjusted payment for Smoothness. Price adjustment for pavement smoothness will apply to the total area of concrete within a section of pavement and shall be applied in accordance the following equation and schedule:

\[(\text{Sq yds in section}) \times (\text{original unit price per sq yds}) \times \text{PFm} = \text{reduction in payment for area within section}\]

<table>
<thead>
<tr>
<th>Average Profile Index (inches per mile)</th>
<th>Contract Unit Price Adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>pavement strength rating</td>
<td></td>
</tr>
<tr>
<td>over</td>
<td></td>
</tr>
<tr>
<td>30,000 lb or less</td>
<td></td>
</tr>
<tr>
<td>0 - 7</td>
<td>0.30</td>
</tr>
<tr>
<td>7 - 9</td>
<td>0.32</td>
</tr>
<tr>
<td>9.1 - 11</td>
<td>0.24</td>
</tr>
<tr>
<td>11.1 - 13</td>
<td>0.22</td>
</tr>
<tr>
<td>13.1 - 14</td>
<td>0.18</td>
</tr>
<tr>
<td>14.1 - 15</td>
<td>0.10</td>
</tr>
<tr>
<td>15.1 & up</td>
<td>corrective work required</td>
</tr>
</tbody>
</table>
FAA AC 150/5370
APR’s Experience with P-501

• Criteria
 ▫ ¼ - Inch in 16 Feet or Pl of 15 (inches / mile)
 ▫ ½ - Inch Maximum Deviation to Design Grade

• Conservative from Aircraft Response Perspective
• Causes Disputes Regarding Pavement Acceptance
• Prompts the Question: Should the Decision to Repair be Made Case by Case?
• Do We want to Look at Different Pavements with Different Tolerances
 ▪ Outer Lanes, Parking Ramps, etc.
Case History: Dispute Resolution

• AF Asphalt Runway Rehabilitation Project had Questionable PI Values Causing the Owner Concern
 - Higher PI Values were on the Outer Lanes
 - Aircraft Simulations Showed Aircraft Response was Acceptable
 - Decision was made to Accept the Pavement and the Runway was Opened
Grade Control

• ½ - Inch Max Deviation from Design
• Measure at 50-Foot Intervals or Less and at All Breaks in Grade
• Lateral Deviation Shall Not Exceed .10 Feet
• Vertical Deviation Shall Not Exceed .04 Feet
• Grade Control not Part of Pay Factor
Profiling Devices

- IPRF 01-G-002-02-4
 - Can “Off the Shelf” Profilers be Used to Assess Airport Pavement Smoothness Using the P-501 Specification ¼ - Inch in 16 Feet?
Various Profiling Devices

- Walking Profilers
 - Sufficient Accuracy for Airfield Evaluation
 - Relatively Inexpensive
 - Can Track All Event Wavelengths
 - Collection Speed is Biggest Drawback
- “Flexible Data”
Various Profiling Devices

- Inertial Profilers
 - Van, Truck or ATV Mounted
 - Faster than Walking Type
 - Sub Millimeter Accuracy
 - Texture can Adversely Affect Ride Readings (Older Lasers)

- Not as Repeatable as Walking Profilers
- More Expensive
- Difficulty Tracking Longer Wavelengths
- Requires Acceleration Room
“Wet or Dry Profiler”

- Moves with or is Directly Mounted to the Paving Train
- Provides Immediate Feedback to the Paver
- Like Inertial Profilers, Difficult to Track Longer Wavelengths
Device Evaluation Summary

- All Device Types Tested *Have* the Required Accuracy to Assess Airport Pavements using the P-501
- Some Cannot Detect Grade Control
- Some are Slow to Operate
- Each Type has Advantages and Limitations
FAA Defined Roughness

• Profile Roughness:
 ▫ “The FAA defines profile roughness as surface profile deviations present over a portion of the runway that cause airplanes to respond in ways that can increase fatigue on airplane components, reduce braking action, impair cockpit operations, and/or cause discomfort to passengers.”

 FAA AC 150/5380-9, Page 1
Roughness Defined

- Shock Loading
 - Short wavelength roughness that is too fast for the tires and suspension system to react. (rattles instruments, jars avionics)
Roughness Defined

• Single Axle Loading
 ▫ Short wavelength roughness that the tires and suspension system are capable of reacting to. (Increases O&S costs, passenger complaints)
Roughness Defined

- Whole Aircraft Loading
 - Longer wavelength roughness that excites the whole aircraft (Aircraft fatigue damage, reduces braking ability, reduces pavement life) - Grade Control Issue
Typical Whole Aircraft Loading
Runway 4L-22R at EWR, South Extension

- EWR Runway 4L South Extension, 37.5 Feet LOC
- EWR Runway 4L South Extension, 12.5 Feet LOC
- EWR Runway 4L South Extension, Centerline
- EWR Runway 4L South Extension, 12.5 Feet ROC
- EWR Runway 4L South Extension, 37.5 Feet ROC

Distance (feet)

Elevation (in)
Runway Roughness Evaluation: A Unique Problem

- Landing Gear Spacing up to 100 Feet
- Speeds Greater than 150 Knots
- Aircraft will Respond to Bumps 300 Feet Long or Longer
- Multiple Smaller Events in Succession can be Worse than One Large Event
- Struts are Primarily Designed for Landing Impact
The California Profilograph Relative to a Modern Commercial Aircraft

Boeing 777-200ER
Gear Spacing 84 feet 11 inches
Equates to 3.4 California Profilograph lengths

Image Courtesy Boeing Commercial Aircraft Company
FAA AC 150/5380-9 - Boeing Bump Index

- **Acceptable** – Minor Impact on Aircraft Fatigue Damage and Minimal Passenger Discomfort
- **Excessive** – Pavement Repair Recommended. Immediate Closure Not Required
- **Unacceptable** – Immediate Closure of the Affected Pavement
FAA AC 150/5380-9
APR’s Real-World Experience Thus Far

• Airports are Concluding if they Pass the Boeing Bump Index (BBI), Their Pavement is OK
• BBI Does not Consider Multiple Bumps, Aircraft Type or the Velocity of Encounter.
• This AC is Not Being Interpreted as Intended by the FAA
 ▪ Puts an “OK” Stamp on Marginal or Unacceptable Pavements
FAA Guidance for Measuring the Runway Profiles

- **Longitudinal Lines of Survey**
 - Measure Centerline and 10 Feet and/or 17.5 Feet Left & Right of the Centerline (17.5 feet is for wide body operations)

- **Survey Interval**
 - .25-Meter (0.82 feet) Minimum
Flexible Data

• Measuring the Initial with a Profile Walking Profiler
 ▫ Complies with FAA Advisory Circulars
 • 16-Foot Straightedge
 • California Profilograph
 ▫ Provides Further Analysis Options
 • Aircraft Simulation
 • Dispute Resolution
 ▫ Provides a True Profile for Use in Pavement Management
 • Tracking Differential Settlement

www.aprconsultants.com
Case Studies

- Pilot Reported Roughness
 - Combining Recorded Aircraft Response with Aircraft Simulation
- Differential Settlement
 - Change Happens
• Toronto International (YYZ) Runway Intersection Before Repairs.
• Boeing 777 Onboard FDM System Recorded Nz Values Above .7G, Yet BBI was “Acceptable”
Intersection Showing Crown for Drainage

Bumps before and after intersection

Elevation (mm)
Distance (meters)

1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850

Bumps Preceding Intersection
Bumps After Intersection

5 m ROC
5 m LOC
CL
Probable Causes of Pilot Complaints

• Located in the Middle Affecting Takeoffs in the Both Directions
• Aircraft Velocity is High
 ▫ Longer Wavelengths
 ▫ Harder to Detect
• Multiple Events in Both Directions
• Undulations Prevent Effective Dampening of Aircraft Response
• Point of Rotation Increases Main Gear Loading
Preventable Action – Evaluate the Design

• Design Constraints can Cause Unacceptable Roughness
 ▫ Vertical Curves
 ▫ Tying into Existing Elevations
 ▫ Patching

• Intersecting Runways
 ▫ Crowns are Bumps (Increases Aircraft Sink Speed)
 ▫ Optimize Drainage and Roughness
 ▫ Minimize the Impact on the Primary Runway
Differential Settlement on Airport Pavements – Change Happens

- Large Amounts of Fill Material have Potential for Differential Settlement
- Unstable Soils and Clays
- Tunneling - Vehicular, Utility, Other...
- Seasonal Impact - Rains, Freeze/Thaw Cycle
Measure a Baseline Profile For Future Reference

- Pavements Settle with Time, Traffic and Climate
- Measure Baseline True Profile (MSL) Before Pavement Opens to Traffic
 - Profile Data is a Deliverable
 - Used for Smoothness Acceptance
- Track Differential Settlement Periodically by Comparing MSL Profiles
- New PMS Tool; Non Destructive Test of Pavement’s Structural Integrity
Differential Settlement
New PCC Runway with Deep Fill

Compare 2006 to 2010

Elevation (in) vs. Distance (feet)

2006 Elevation Profile
2010 Elevation Profile

Differential Settlement
New PCC Runway with Deep Fill
Conclusions

- P-501, when Grade Control is Achieved, Produces Acceptable Pavement from a Ride Quality Perspective
 - Current Acceptance Standards are Conservative for Ride Quality
 - Consider Alternative Limits for Outer Lanes and Ramps
- Many New Devices can assess New Pavement for Initial Smoothness
 - Use Devices to Measure “Flexible Data”
 - Satisfies FAA and Provides Data for Other Uses
Conclusions

• **Roughness is Different than Smoothness**
 ▫ FAA has taken First Step to Help Airports Identify / Quantify Roughness

• **We Know that as Pavements Age, Profile Changes**
 ▫ Develop One Comprehensive Method Using Flexible Data
 • Acceptance Profile Becomes Baseline for Use Throughout Pavement’s Life in Pavement Management
The End